Điện trường vật dẫn từ hai quả cầu nối nhau

Hình 1: Phân bố cường độ điện trường (colormap jet)
Hình 2: Phân bố cường độ điện trường (colormap hot)
Hình 3: Vector cường độ điện trường và phân bố điện thế

 

Code chương trình Matlab

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
function E_Field_Connected_Spheres
% Author: Tran Hai Cat
% Lecturer in Physics, HCM University of Technology and Education
% - Dai hoc Su pham Ky thuat Tp. Ho Chi Minh
% Created: 2019.08.03
clc;
clear variables;
close all;

%% INPUT DATA FOR USER:
L = 2; % distance between spheres
R1 = 25e-2; % sphere radius
R2 = 5e-2;
a = L/4; % 2a=L - distance between spheres
Vmax = 100;

Nx = 100;
Ny = 50;

eps = Vmax/1e5;

contour_range_V = linspace(0,Vmax,41);

xmin = -2; xmax = 2; ymin = -1; ymax = 1;
%% CALCULATION
x = linspace(xmin,xmax,Nx);
y = linspace(ymin,ymax,Ny);

mpx = ceil(Nx/2); % Mid-point of x
mpy = ceil(Ny/2); % Mid point of y

hx = (xmax-xmin)/(Nx-1);
hy = (ymax-ymin)/(Ny-1);

A = 2/hx/hx+2/hy/hy;
B = 1/hx/hx;
C = 1/hy/hy;

V = zeros(Nx,Ny); % Potential (Voltage) matrix
V_const = zeros(Nx,Ny);

% Initializing edges potentials
V(1,:) = 0;
V(Nx,:) = 0;
V(:,1) = 0;
V(:,Ny) = 0;

% Initializing Corner potentials
V(1,1) = 0.5*(V(1,2)+V(2,1));
V(Nx,1) = 0.5*(V(Nx-1,1)+V(Nx,2));
V(1,Ny) = 0.5*(V(1,Ny-1)+V(2,Ny));
V(Nx,Ny) = 0.5*(V(Nx,Ny-1)+V(Nx-1,Ny));

% Sphere position:
dis = ceil(Nx*a/(xmax-xmin));
px1 = mpx-dis;
px2 = mpx+dis;

% Initializing Sphere Potentials:
phi = linspace(0,2*pi,100);
for i = 1:length(phi)
x_sphere = R1*cos(phi(i));
px_sphere = px1+ceil(Nx*x_sphere/(xmax-xmin));
y_sphere = R1*sin(phi(i));
py_sphere = mpy+ceil(Ny*y_sphere/(ymax-ymin));

V(px_sphere,py_sphere) = Vmax;
V_const(px_sphere,py_sphere) = 1;
end

for i = 1:length(phi)
x_sphere = R2*cos(phi(i));
px_sphere = px2+ceil(Nx*x_sphere/(xmax-xmin));
y_sphere = R2*sin(phi(i));
py_sphere = mpy+ceil(Ny*y_sphere/(ymax-ymin));

V(px_sphere,py_sphere) = Vmax;
V_const(px_sphere,py_sphere) = 1;
end

% Initializing Rod Potentials:
V(px1:px2,mpy) = Vmax;
V_const(px1:px2,mpy) = 1;

p = 1e100;
V_old = V;
while p>eps
for i=2:Nx-1
for j=2:Ny-1
if V_const(i,j)==0
V(i,j)=1/A*(B*(V(i+1,j)+V(i-1,j))+C*(V(i,j+1)+V(i,j-1)));
end
end
end
Delta_V = abs(V-V_old);
p = max(Delta_V(:));
V_old = V;
error = p/Vmax;
fprintf('error=%f\n',error);
end

% Take transpose for proper x-y orientation
V = V';
[Ex,Ey]=gradient(V);
Ex = -Ex;
Ey = -Ey;
E = sqrt(Ex.^2+Ey.^2);
Emax = max(E(:));

%% FIGURES:
figure('name','Electric Field Magnitude','color','w','numbertitle','off');
hold on
pcolor(x,y,E)
axis image
shading interp;
colormap jet
colorbar('location','eastoutside','fontsize',14);
xlabel('x [m]','fontsize',14);
ylabel('y [m]','fontsize',14);
title('Electric Field Magnitude');
set(gca,'fontsize',14);
axis equal

figure('name','Electric Field Magnitude','color','w','numbertitle','off');
hold on
pcolor(x,y,E)
axis image
shading interp;
colormap hot
colorbar('location','eastoutside','fontsize',14);
xlabel('x [m]','fontsize',14);
ylabel('y [m]','fontsize',14);
title('Electric Field Magnitude');
set(gca,'fontsize',14);
axis equal

figure('name','Electric Field and Potential distribution','color','w','numbertitle','off');
pcolor(x,y,V)
axis image
shading interp;
colormap jet
hold on,
% contour(x,y,V,contour_range_V,'linewidth',0.5,'linecolor','k');
quiver(x,y,Ex,Ey,2)
axis([min(x) max(x) min(y) max(y)]);
colorbar('location','eastoutside','fontsize',14);
xlabel('x [m]','fontsize',14);
ylabel('y [m]','fontsize',14);
title('Electric field and Potential distribution');
set(gca,'fontsize',14);
axis equal